Thermodynamics of Materials

Go to class
Write Review

Free Online Course: Thermodynamics of Materials provided by edX is a comprehensive online course, which lasts for 16 weeks long, 9-12 hours a week. The course is taught in English and is free of charge. Thermodynamics of Materials is taught by Rafael Jaramillo, Jessica Sandland and John Harrold.

Overview
  • This course describes the fundamental competition between energy and disorder that determines the state of materials at equilibrium. It introduces the laws of thermodynamics, the concept of equilibrium, and thermodynamic potentials. Both classical and statistical interpretations of entropy are presented, but the emphasis of the course is on classical thermodynamics. Topics covered include unary systems, reacting chemical systems, and binary phase diagrams. Emphasis is placed on the concept of constrained equilibrium, the mathematical structure of classical thermodynamics, and on free energy-composition diagrams that underpin binary phase diagrams. Computational thermodynamics is also covered, and thermodynamics software is used throughout the course. The course also emphasizes the uses of thermodynamics is materials selection and process design, and the importance of materials data.

Syllabus
  • Section A: Equilibrium

    • Lecture 1 - Introduction to thermodynamics: Enthalpy, entropy, and an atomic view
    • Lecture 2 - Systems, states, and material properties
    • Lecture 3 - Processes and the First Law
    • Lecture 4 - Irreversible processes, the Second Law, and equilibrium
    • Lecture 5 - The combined statement and differential forms
    • Lecture 6 - Equilibrium conditions

    Section B: Phase Diagrams

    • Lecture 7-8 - Unary systems and phase diagrams
    • Lecture 9 - The three dees of thermodynamics
    • Lectures 10-11 - Systems of reacting gases
    • Lecture 12 - Introduction to binary phase diagrams
    • Lecture 13 - The lever rule
    • Lecture 14-15 - Partial molar properties and the common tangent construction
    • Lecture 16 - Heterogeneous binary systems and ideal solutions
    • Lectures 17-18 - Non-ideal solutions: Dilute and regular models
    • Lecture 19 - Heterogeneous binary systems: Gibbs phase rule; eutectic, and peritectic reactions
    • Lecture 20-21 - Reference states
    • Lecture 22 - Intermediate phases and line compounds
    • Lecture 23 - Ternary phase diagrams
    • Lecture 24 - Reacting systems: Metal oxidation

    Section C: Foundations

    • Lecture 25 - Clausius’ statement and the Carnot efficiency limit
    • Lecture 26 - Reversible & irreversible heat engines
    • Lecture 27 - Introduction to statistical thermodynamics