Support Vector Machines in Python, From Start to Finish

Go to class
Write Review

Support Vector Machines in Python, From Start to Finish provided by Coursera is a comprehensive online course, which lasts for 2 hours worth of material. Support Vector Machines in Python, From Start to Finish is taught by Josh Starmer. Upon completion of the course, you can receive an e-certificate from Coursera. The course is taught in Englishand is Paid Course. Visit the course page at Coursera for detailed price information.

Overview
  • In this lesson we will built this Support Vector Machine for classification using scikit-learn and the Radial Basis Function (RBF) Kernel. Our training data set contains continuous and categorical data from the UCI Machine Learning Repository to predict whether or not a patient has heart disease.

    This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your Internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with (e.g. Python, Jupyter, and Tensorflow) pre-installed.

    Prerequisites:
    In order to be successful in this project, you should be familiar with programming in Python and the concepts behind Support Vector Machines, the Radial Basis Function, Regularization, Cross Validation and Confusion Matrices.

    Notes:
    - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want.
    - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.