Structural devices

Go to class
Write Review

Structural devices provided by OpenLearn is a comprehensive online course, which lasts for 20 hours worth of material. Upon completion of the course, you can receive an e-certificate from OpenLearn. The course is taught in Englishand is Free Certificate. Visit the course page at OpenLearn for detailed price information.

Overview
  • Microelectronics has enabled designers of integrated circuits to exercise complete control over the electrical characteristics of each component they create. This free course, Structural devices, ...

Syllabus
    • Introduction
    • Learning outcomes
    • 1 Structural devices: a static role
    • 1 Structural devices: a static role
    • 2 Form and function, method and material
    • 2 Form and function, method and material
    • 2.1 Introduction
    • 2.2 The challenge for innovation
    • 2.3 The fabrication process for a MEMS Pirani sensor
    • 2.4 Thermal and electrical conductance
    • 2.5 Review
    • 3 Building atomic force microscope probes
    • 3 Building atomic force microscope probes
    • 3.1 Introduction
    • 3.2 The principles of scanning probe microscopes
    • 3.3 The scanning tunnelling microscope
    • 3.4 The atomic force microscope
    • 3.5 Scanning modes of the AFM
    • 3.5.1 Contact mode
    • 3.5.2 Non-contact (tapping) mode
    • 3.5.3 Lateral force (friction) mode
    • 3.5.4 Other modes
    • 3.6 Design considerations for AFM probes
    • 3.6.1 Stiffness
    • 3.6.2 Resonant frequency
    • 3.6.3 Quality of resonance
    • 3.6.4 Materials selection for cantilevers
    • 3.7 Micromachining the AFM tip and cantilever
    • 3.7.1 The machined-at-once tip and cantilever
    • 3.7.2 The hybrid probe
    • 3.7.3 Oxidation sharpening
    • 3.7.4 The carbon-nanotube tip
    • 3.8 Review
    • 4 Piezoelectricity: motion from crystals
    • 4 Piezoelectricity: motion from crystals
    • 4.1 The piezoelectric effect
    • 4.2 The piezoelectric effect at the atomic scale
    • 4.3 PZT
    • 5 Short range forces
    • 5 Short range forces
    • 5.1 Stickiness
    • 5.1.1 London forces
    • 5.1.2 Dipole-dipole forces
    • 6 Vibrations and resonance
    • 6 Vibrations and resonance
    • 6.1 Why is resonance important?
    • 6.2 Natural frequency of free oscillations
    • 6.3 Damping
    • 6.3.1 Damped harmonic oscillator
    • 6.4 Driven oscillations and resonance
    • 6.5 Q-value
    • 6.6 Oscillators in general
    • 7 Deposition
    • 7 Deposition
    • 7.1 Introduction
    • 7.2 Film properties
    • 7.2.1 Thickness control and uniformity
    • 7.2.2 Step coverage (conformality)
    • 7.2.3 Chemical composition
    • 7.2.4 Microstructure
    • 7.2.5 Stress
    • 7.3 Depositing metals and alloys
    • 7.3.1 Electroplating
    • 7.3.2 Evaporation
    • 7.3.3 Plasmas
    • 7.3.4 Physical vapour deposition (PVD), sputtering
    • 7.3.5 Ion beam deposition
    • 7.3.6 Laser ablation deposition
    • 7.4 Depositing compounds
    • 7.4.1 Spin-on
    • 7.4.2 Reactive PVD
    • 7.4.3 Chemical vapour deposition (CVD)
    • 7.4.4 Plasma-enhanced CVD (PECVD)
    • 7.4.5 Atomic layer deposition (ALD)
    • 7.4.6 Molecular beam epitaxy (MBE)
    • 7.4.7 Deposition of patterned films: lift-off and damascene
    • 8 Etching
    • 8 Etching
    • 8.1 Introduction
    • 8.2 Wet etches: acids and bases
    • 8.3 Gas-phase etching
    • 8.3.1 Fluorine-based etching of silicon
    • 8.3.2 Sputter etching: argon ion etching of gold
    • 8.3.3 Reactive ion etching: chlorine/argon plasma etching of aluminium
    • 8.3.4 Etchants and protectants: sulphur hexafluoride/oxygen plasma etching of siliconL
    • 8.3.5 Alternative plasma chamber designs: MERIE and ICP
    • 8.3.6 Deep silicon etching
    • 8.4 Stopping the etch
    • 8.4.1 Open-loop control
    • 8.4.2 Closed-loop control
    • 8.4.3 Self-limiting etches
    • 8.5 Review
    • Conclusion
    • Acknowledgements