Solar Energy: Photovoltaic (PV) Energy Conversion

Go to class
Write Review

Free Online Course: Solar Energy: Photovoltaic (PV) Energy Conversion provided by edX is a comprehensive online course, which lasts for 12 weeks long, 10-11 hours a week. The course is taught in English and is free of charge. Upon completion of the course, you can receive an e-certificate from edX. Solar Energy: Photovoltaic (PV) Energy Conversion is taught by Arno Smets, Miro Zeman and René van Swaaij.

Overview
  • The key factor in getting more efficient and cheaper solar energy panels is the advance in the development of photovoltaic cells. In this course you will learn how photovoltaic cells convert solar energy into useable electricity. You will also discover how to tackle potential loss mechanisms in solar cells. By understanding the semiconductor physics and optics involved, you will develop in-depth knowledge of how a photovoltaic cell works under different conditions. You will learn how to model all aspects of a working solar cell. For engineers and scientists working in the photovoltaic industry, this course is an absolute must to understand the opportunities for solar cell innovation.

    This course is part of the Solar Energy Engineering MicroMasters Program designed to cover all physics and engineering aspects of photovoltaics: photovoltaic energy conversion, technologies and systems.

    We recommend that you complete this course prior to taking the other courses in this MicroMasters program.

Syllabus
  • Week 1: Introduction
    How do solar cells convert solar energy into electrical energy? What are the basic building blocks of a solar cell?

    Week 2: Semiconductor Basics
    What are semiconductors? What is a band diagram?

    Week 3: Generation and Recombination
    What are the physics of charge carriers?

    EXAM

    Week 4: The P-N Junction
    What is a diode? How does a diode change when we apply a voltage? What about when we illuminate it with solar energy?

    Week 5: Advanced Concepts in Semiconductors
    What happens when we connect a semiconductor to a metal? What other types of junctions of semiconductor materials are important for solar cells?

    Week 6: Light management 1: Refraction/Dispersion/Refraction
    Which optical phenomena are important for solar cells? How can we use them to make sure maximal light is absorbed.

    EXAM

    Week 7: Light management 2: Light Scattering
    Which techniques can we use to scatter light in our solar cell to enhance optical path length?

    Week 8: Electrical Losses
    Pull all the concepts together to understand how to engineer solar cells.

    EXAM