Plasmonics: From Fundamentals to Modern Applications

Go to class
Write Review

Free Online Course: Plasmonics: From Fundamentals to Modern Applications provided by edX is a comprehensive online course, which lasts for 5 weeks long, 4-6 hours a week. The course is taught in English and is free of charge. Plasmonics: From Fundamentals to Modern Applications is taught by Andrey Bogdanov and Mihail Petrov.

Overview
  • Gain a wide view on the physics of light interaction with metal nanostructures. In this course, you will learn about thewhole diversity of unique effects appearing at the junction of nanotechnology, subwavelength optics, quantum mechanics, and solid state physics. You will find out how giant field enhancement near metallic nanostructures can be used for detecting single biomolecule, and whether it is possible to build a nanometer scale laser.

    Within the framework of the course, we will discuss in details the fundamental principles of light interaction with plasma oscillations in solid state. By passing our course you will:

    • step-by-step learn the field of plasmonics starting from optical properties of metals to the latest applications of plasmonic nanostructures
    • get the minimal theoretical background, which will be illustrated and supported by the describing experimental techniques and discussing the cutting edge scientific results.
    • get a hands-on experience on how to describe the plasmons in various nanostructures such as single metallic nanoparticles, nanoparticle oligomers and periodic arrays, plasmonic waveguides and wires.
    • In the final part of the course, you will have an overview of application of plasmonics in chemical biosensing, nanolasing, light trapping, and optomechanical control.

    The course is divided into five sections:

    • Electromagnetic properties of metals
    • Surface plasmon-polaritons
    • Localized surface plasmon resonances
    • Bulk plasmon-polaritons
    • Applications of plasmonics

    This course is aimed for graduate and undergraduate students who are majoring in physics and engineering science related to optics. As well as researchers who want to gain or deepen their knowledge in the field of modern photonics.This course can give a boost to your educational or academic career, and potentially will stimulate you to conduct your own research in this field.

Syllabus
  • Week 1: Optical properties of metals

    • Maxwell’s equations, dielectric function of metals, Drude-Lorentz approximaion, plasma frequency of metals, skin depth, and absorption in metals

    Week 2: Bulk plasmon polaritons

    • Field distribution and dispersion of surface-plasmon polaritons, methods of excitation, plasmonic waveguide, spoof plasmons
    • Longitudinal and transversal electromagnetic wave in plasma, bulk plasmons, spatial dispersion, waves in anisotropic plasma

    Week 3: Surface plasmon-polaritons

    • Particles in electromagnetic field, Mie theory, scattering and absorption cross-sections, localized plasmon resonance of a spherical metal nanoparticle
    • Basic fabrication and optical characterization methods

    Week 4: Localized plasmons in nanostructures

    • Spheroid and elongated nanoparticles, core-shell structures, void plasmons
    • Higher order resonances harmonics beyond quasistatic approximation, basics of Mie theory

    Week 5: Applications of plasmonics

    • Plasmonic dimer, oligomer and chain structures for field enhancement and energy transport; two-dimensional arrays of plasmonic particles for reflection and refraction control;
    • Radiation enhancement and quenching via plasmonic structures, Surface-enhanced Raman scattering, plasmonic waveguide for quantum cascade lasers, solar energy harvesting with plasmonic structures, plasmonic structures for optomechanics