Pandas Library

Go to class
Write Review

Pandas Library provided by Udemy is a comprehensive online course, which lasts for 4-5 hours worth of material. Pandas Library is taught by Sai Acuity Institute of Learning Pvt Ltd Enabling Learning Through Insight!. Upon completion of the course, you can receive an e-certificate from Udemy. The course is taught in Englishand is Paid Course. Visit the course page at Udemy for detailed price information.

Overview
  • The Ultimate Pandas Tutorial for Data Science Beginners

    What you'll learn:

    • You will learn the basics of Pandas Library
    • You will have clarity on Pandas Data structures - Series & Dataframes
    • You will Play with Dataframes, Selecting columns & rows from a dataframe
    • You will understand Subsetting of dataframes - df[start_index:end_index]
    • You will get insights on Indexing
    • You will get clarity on Dataframes merging and concatenating

    Pandas Background:

    When working with tabular data, such as data stored in spreadsheets or databases, pandas is the right tool for you. pandas will help you to explore, clean and process your data. In pandas, a data table is called a DataFrame. Pandas supports the integration with many file formats or data sources out of the box (csv, excel, sql, json, parquet,. . . ). Importing data from each of these data sources is provided by function with the prefix read_*. Similarly, the to_* methods are used to store data.

    Selecting or filtering specific rows and/or columns? Filtering the data on a condition? Methods for slicing, selecting, and extracting the data you need are available in pandas. There is no need to loop over all rows of your data table to do calculations. Data manipulations on a column work elementwise. Adding a column to a DataFrame based on existing data in other columns is straightforward.

    Pandas has great support for time series and has an extensive set of tools for working with dates, times, and timeindexed data. Data sets do not only contain numerical data. pandas provides a wide range of functions to cleaning textual data and extract useful information from it.


    In this course we cover:

    Basics of Pandas Library

    Pandas Data structures - Series & Dataframes

    Playing with Dataframes, Selecting columns & rows from a dataframe

    Subsetting of dataframes - df[start_index:end_index]

    Indexing

    Dataframes merging and concatenating


    Python programming has become one of the most sought after programming languages in the world, with its extensive amount of features and the sheer amount of productivity it provides. Therefore, being able to code Pandas in Python, enables you to tap into the power of the various other features and libraries which will use with Python. Some of these libraries are NumPy, SciPy, MatPlotLib, etc.