Survival Analysis in R

Go to class
Write Review

Free Online Course: Survival Analysis in R provided by DataCamp is a comprehensive online course, which lasts for 4 hours worth of material. The course is taught in English and is free of charge. Upon completion of the course, you can receive an e-certificate from DataCamp. Survival Analysis in R is taught by Heidi Seibold.

Overview
  • Learn to work with time-to-event data. The event may be death or finding a job after unemployment. Learn to estimate, visualize, and interpret survival models!

    Do patients taking the new drug survive longer than others? How fast do people get a new job after getting unemployed? What can I do to make my friends stay on the dancefloor at my party? All these questions require the analysis of time-to-event data, for which we use special statistical methods. This course introduces basic concepts of time-to-event data analysis, also called survival analysis. Learn how to deal with time-to-event data and how to compute, visualize and interpret survivor curves as well as Weibull and Cox models.

Syllabus
  • What is Survival Analysis?
    -In the first chapter, we introduce the concept of survival analysis, explain the importance of this topic, and provide a quick introduction to the theory behind survival curves. We discuss why special methods are needed when dealing with time-to-event data and introduce the concept of censoring. We also discuss how we describe the distribution of the elapsed time until an event.

    Estimation of survival curves
    -In this chapter, we will look into different methods of estimating survival curves. We will discuss the Kaplan-Meier estimate and the Weibull model as tools for survival curve estimation and learn how to communicate those results through visualization.

    The Weibull model
    -In this chapter, we will learn how to estimate and visualize a Weibull model to learn about the effects of covariates on the time-to-event outcome.

    The Cox Model
    -In the last chapter, we learn how to compute and interpret Cox models to understand why they are useful and how they differ from Weibull models.