R for Data Science: Lunchbreak Lessons

Go to class
Write Review

Free Online Course: R for Data Science: Lunchbreak Lessons provided by LinkedIn Learning is a comprehensive online course, which lasts for 15 hours worth of material. The course is taught in English and is free of charge. Upon completion of the course, you can receive an e-certificate from LinkedIn Learning. R for Data Science: Lunchbreak Lessons is taught by Mark Niemann-Ross.

Overview
  • Learn R on your lunch break. This weekly series reviews the language features, development tools, and libraries that will make you a more productive R programmer.

Syllabus
  • New This Week

    • Excel in R: INDEX
    Introduction
    • Welcome
    • Exercise files
    1. R for Data Science Lessons (Jan-Mar 2018)
    • R built-in data sets
    • Vector math
    • Subsetting
    • R data types: Basic types
    • R data types: Vector
    • R data types: List
    • R data types: Factor
    • R data types: Matrix
    • R data types: Array
    • R data types: Data frame
    • Data frames: Order and merge
    • Data frames: Read and update
    2. R for Data Science Lessons (Apr-Jun 2018)
    • Data frames: rbind
    • Dataframes: cbind
    • apply and lapply
    • mapply
    • plot
    • Brackets and double-brackets
    • mean, rowMeans, and colMeans
    • RSQLite
    • sqldf
    • Aggregate
    • Random numbers
    • Pipeline
    • Working with clipboards
    3. R for Data Science Lessons (Jul-Sep 2018)
    • Style guides
    • cut
    • split
    • askYesNo
    • cdplot
    • Fun
    • boxplot
    • Histogram
    • Plot to file
    • coplot
    • cowsay
    • table
    • Look inside
    4. R for Data Science Lessons (Oct-Dec 2018)
    • barplot
    • Pie chart
    • unlist
    • Joins: Inner and full
    • Joins: Left and right
    • Sets: Union, intersect, and difference
    • Sets: Equal and in
    • colors
    • ifelse
    • spineplot
    • browser
    • debugonce
    • Default mirror
    5. R for Data Science Lessons (Jan-Mar 2019)
    • Dealing with NA
    • Using with()
    • Simple string matching
    • grep
    • dotchart
    • fourfoldplot
    • matplot
    • dimnames
    • mosaicplot
    • stemplot
    • stripchart
    • sunflower
    • Switch
    6. R for Data Science Lessons (Apr-Jun 2019)
    • Switch on factors
    • Any/all
    • sub, gsub, regex, and backreferences
    • agrep and fuzzy matching
    • combn finds combinations
    • edit, fix, and dataentry
    • zeallot
    • menu
    • person
    • txtProgressBar
    • zip and tar
    • bitwise
    • by is like tapply
    • Update your R
    7. R for Data Science Lessons (Jul-Sep 2019)
    • Be careful with transpose
    • Passwords
    • heatmap
    • combine
    • stopifnot
    • weighted.mean
    • chartr
    • file.choose
    • duplicated and unique
    • load and save
    • floor, round, ceiling, and trunc
    • expand.grid
    • Professional groups
    8. R for Data Science Lessons (Oct-Dec 2019)
    • Simplify with c
    • Logical operators
    • char.expand
    • complete.cases
    • swirl
    • tryCatch
    • Double colons
    • for loop
    • The 100th episode
    • while loop
    • repeat loop
    • Create your own swirl lesson
    • Logic and flow control
    9. R for Data Science Lessons (Jan-Mar 2020)
    • matrix, row, and column
    • cumsum, cumprod, cummax, an dcummin
    • issymetric
    • file.access
    • file.info
    • dput and dget
    • Sort a data frame by multiple columns
    • diag
    • crossprod
    • upper.tri and lower.tri
    • strsplit() splits strings at matched characters
    • Use setnames() to change the name of an object
    • Change the structure of a vector with stack()
    10. R for Data Science Lessons (Apr-Jun 2020)
    • Use droplevels() to simplify factors
    • Use .Rmd for documentation
    • Use rep() to create long repetitive vectors
    • Use format() to improve readability
    • Use pmax() and pmin() to discover the scope of paired vectors
    • Use print() for more than you do now
    • Use range() and extendrange() to analyze and manipulate groups of numbers
    • Evaluate the importance of a number with rank()
    • Use saveRDS() and readRDS() to serialize objects
    • Use regular expressions with regexpr() and gregexpr()
    • message
    • regexpr
    • diff
    11. R for Data Science Lessons (Jul-Sep 2020)
    • exists
    • formulas
    • RPres
    • lattice: Introduction
    • lattice: xyplot
    • lattice: cloud and wireframe
    • lattice: contourplot
    • lattice: barchart
    • lattice: splom charts
    • lattice: panels
    • lattice: stripplot
    • whichmin and whichmax
    • par: font, size, color
    12. R for Data Science Lessons (Oct-Dec 2020)
    • par: margins
    • par: pch and points
    • legend
    • identical
    • Matrix math: Overview of functions
    • Matrix math review
    • matrix: solve systems
    • matrix: solve inverse
    • matrix: backsolve and forwardsolve
    • Matrix: Determinant
    • Arrays and outer
    • Matrix: Crossproduct
    • Matrix SVD and QR decomposition
    13. R for Data Science Lessons (Jan-Mar 2021)
    • Matrix: Eigenvalues and eigenvectors
    • Locator
    • on.exit
    • missing
    • nargs
    • tidyverse
    • gutenbergr
    • Create and clean a natural language corpus
    • Remove stopwords from an NLP corpus
    • NLP and term-document matrix
    14. R for Data Science Lessons (April-June 2021)
    • Analyze term-document matrix
    • NLP packages: Tidytext
    • NLP packages: Quanteda
    • NLP packages: Sentiment analysis
    • Word clouds
    • Hidden features of installr
    • Use the Matrix package
    • Create a sparse matrix
    • Sparse matrices, triangles, and more
    • Bootstrap analysis with R
    • checkUsage
    15. R for Data Science Lessons (Jul-Sep 2021)
    • Use R on the Raspberry Pi
    • list2df()
    • Introduction to clustering
    • Clustering with kmeans
    • Clustering with pam and clara
    • Understanding silhouette graphs
    • Clustering with fanny
    • Clustering with hclust
    • Clustering with agnes
    • Clustering with diana
    • cutree and identify with hclust
    • Clustering with mona
    • Clustering: dist vs. daisy
    16. R for Data Science Lessons (Oct-Dec 2021)
    • Parameterized R markdown
    • Run R on a schedule
    • The new forward pipe operator
    • Backslash lambda functions
    • Dist() in depth
    • Scale()
    • toJSON
    • fromJSON
    • Validate JSON
    • Plotmath and expression
    • Run R in batch mode
    • Explore music
    • BEEP
    17. R for Data Science Lessons (Jan-Mar 2022)
    • install.packages
    • old.packages, new.packages, and update.packages
    • library and require
    • Excel in R: SUM
    • Excel in R: IF
    • Excel in R: LOOKUP
    • Excel in R: LEFT and RIGHT
    • Excel in R: MATCH
    • Excel in R: CHOOSE
    • Excel in R: DATE
    • Excel in R: DAYS
    • Excel in R: FIND and FINDB