Python Functions for Data Science

Go to class
Write Review

Free Online Course: Python Functions for Data Science provided by LinkedIn Learning is a comprehensive online course, which lasts for 1-2 hours worth of material. The course is taught in English and is free of charge. Upon completion of the course, you can receive an e-certificate from LinkedIn Learning. Python Functions for Data Science is taught by Lavanya Vijayan and Madecraft.

Overview
  • Save time, and make your code more readable and reusable, by learning the most powerful Python functions for data science.

Syllabus
  • Introduction

    • Python functions you should know
    • Getting the most from this course
    1. Fundamental Built-In Python Functions for Data Science
    • Python print() function
    • Python input() function
    • Python abs() function
    • Python round() function
    • Python min() function
    • Python max() function
    • Python sorted() function
    • Python sum() function
    • Python len() function
    • Python type() function
    2. Advanced Built-In Python Functions for Data Science
    • Python map() function
    • Python zip() function
    • Python filter() function
    3. Functions from NumPy Library for Manipulation of Numerical Data
    • Create NumPy arrays in Python
    • Minimum and maximum values in NumPy arrays
    • Indices of min and max values in NumPy arrays
    • Find shapes of NumPy arrays and reshape
    • Select items or groups of items from NumPy arrays
    • Arithmetic operations on NumPy arrays
    • Scalar operations on NumPy arrays
    • Statistical operations on NumPy arrays
    • Other operations on NumPy arrays
    4. Functions from SciPy Library for Scientific Computing
    • Linear algebra operations with SciPy
    • Statistical functions with SciPy
    5. Functions from pandas Library for Data Manipulation and Data Analysis
    • Create a pandas series
    • Create a pandas DataFrame
    • Select data subsets from pandas objects
    • Modify pandas objects
    • Combine data from pandas objects
    • Group data from pandas objects
    6. Functions from Matplotlib for Data Visualization
    • Matplotlib line plots
    • Matplotlib scatter plots
    • Matplotlib bar plots
    • Matplotlib pie charts
    • Matplotlib histograms
    • Matplotlib subplots
    7. Functions from Seaborn for Data Visualization
    • Seaborn box plots
    • Seaborn kernel density estimate plots
    • Seaborn violin plots
    • Seaborn heatmaps
    Conclusion
    • Get started using Python functions