Model Predictive Control: Theory and Applications

Go to class
Write Review

Free Online Course: Model Predictive Control: Theory and Applications provided by Swayam is a comprehensive online course, which lasts for 12 weeks long. The course is taught in English and is free of charge. Upon completion of the course, you can receive an e-certificate from Swayam. Model Predictive Control: Theory and Applications is taught by Prof. Niket Kaisare.

Overview
  • Model Predictive Control (MPC) is one of the predominant advanced control techniques. MPC originated in the chemical process industry and is now applicable to a wide range of application areas. MPC is an optimization-based technique, which uses predictions from a model over a future control horizon to determine control inputs. This course will provide an overview of MPC, and will cover both theory and practical applications. The course will involve MATLAB-based hands-on learning modules for understanding and solving advanced control problems. The course will cover multiple aspects of MPC implementation, including dynamical system models, state estimation, unconstrained and constrained optimal control, and model identification. Applications of practical / industrial relevance will also be discussed.
    The objectives of this course include
    • Provide historical insight into MPC and its role in industry and research
    • To develop linear state estimation and linear quadratic control theories
    • To introduce the concept of receding horizon in MPC and its practical implementation
    • To discuss tools for model building for MPC• To introduce tools for parameter identification
    • To provide hands-on learning using practically relevant examples
    • To discuss challenges and opportunities in research as well as industrial applications
    INTENDED AUDIENCE :
    Post-Graduate students; final year UG; industry / research professionalsPREREQUISITES : UG Math (covering linear algebra) and Any of the following courses: Process Control; Control Engineering / Systems; Digital Control INDUSTRIES SUPPORT :Automation companies, such as: ABB, Honeywell, Yokogawa, Aspen Tech, Siemens, Emerson, Rockwell, Schnieder and GE. Chemical Process Companies, such as: Shell, IOCL, HPCL, BPCL, Reliance, ONGC, Exxon Mobil, Praxair, etc.

Syllabus
  • COURSE LAYOUT

    Week 0:a. Introduction to Model Predictive Control
    b. Recap of Linear Algebra
    Week 1:Models for MPC: Step-Response Models
    Finite impulse and step response models; Model prediction; Parameter estimationWeek 2:Models for MPC: Linear Time Invariant (LTI) models
    State-space models; Transfer function models; Model transformationWeek 3:Model analysis and Disturbance Modeling
    Model stability; Observability and controllabilityRepresenting uncertainty; White, colored and integrating noiseWeek 4:Dynamic Matrix Control
    Step-response based MPC
    Week 5:Linear State Estimation
    State observer; Pole placement; StabilityWeek 6:Optimal Linear State Estimation
    Kalman Filter; Stochastic filtering theoryWeek 7:Linear Control Systems
    Linear control; pole placement; stabilityWeek 8:Unconstrained linear quadratic control
    LQ control theory
    Week 9:Constrained LQ control
    Constrained LQ control theoryWeek 10:State-Space MPC
    State-space MPC; deterministic formulation; state feedback controlWeek 11:State-Space Output-Feedback MPC
    Separation principle; Implementation of output feedback MPCWeek 12:Practical Implementation
    Nonlinear systems; Multi-rate system; Inferential control