Fiber Optics

Go to class
Write Review

Free Online Course: Fiber Optics provided by Swayam is a comprehensive online course, which lasts for 8 weeks long. The course is taught in English and is free of charge. Upon completion of the course, you can receive an e-certificate from Swayam.

Overview
  • The course is aimed at equipping the undergraduate Engineering and Physics students with the basic understanding of optical fibers and optical fiber communication. The course provides knowledge of optical fiber waveguide at fundamental level, essentials of an optical fiber communication system and understanding of various components of an optical fiber telecommunication system.

    INTENDED AUDIENCE : It is an elective course for Undergraduate students of Electronics and Communication Engineering, Computer Science and Engineering, Electrical Engineering, Information Technology, Engineering Physics, and Industry Personnel of Optical Fiber and Communication IndustryPRE-REQUISITES : A basic course on Electromagnetic TheoryINDUSTRY SUPPORT : Sterlite Technologies Ltd., Tejas Networks, Ciena Networks, Infinera India Pvt. Ltd, Eagle Photonics, Nest Photonics, etc, may recognize the course.

Syllabus
  • COURSE LAYOUT

    Week 1: Introduction, need for optical communication, salient features of optical fibers, ray theory of light guidance, numerical
    aperture, modes of a fiber, single and multimode fibers, step-index and graded-index fibers, fiber fabrication techniques
    Week 2: Transmission characteristics of optical fibers, attenuation, pulse broadening mechanism, intermodal dispersion, bit rate -
    length product, material dispersion, electromagnetic wave analysis of light propagation in an infinitely extended medium, em
    waves in dielectrics, boundary conditions
    Week 3: Electromagnetic analysis of planar optical waveguides, TE and TM modes, planar mirror waveguide, dielectric symmetric step-
    index, planar waveguide, symmetric and anti-symmetric modes, b-V curves, modal fields
    Week 4: Power associated with modes of dielectric symmetric planar waveguide, asymmetric planar waveguide, single polarization
    single mode waveguide, excitation of guided modes by prism coupling technique, radiation modes, optical fiber waveguide,
    EH and HE modes, weakly guiding fibers, LP modes, mode cut-offs, b-V curves
    Week 5:
    Optical fiber modes, field patterns, degeneracies, fractional power in the core, single mode fiber, cut-off wavelength, mode
    field diameter, bend loss, splice loss, waveguide dispersion, group delay
    Week 6: Total chromatic dispersion, pulse broadening and chirping, dispersion in graded-index and multilayer fibers, optical fiber
    components and devices, directional coupler, power splitter, WDM coupler, polarization controllers, fiber Bragg gratings
    Week 7:
    Various types of fiber Bragg gratings, fabrication methods, applications, long period gratings, optical fiber amplifier, erbium
    doped fiber amplifier, dispersion management, dispersion shifted fiber, dispersion compensating fiber, sources for optical fiber
    communication, light emitting diode, internal and external quantum efficiencies, LED characteristics, laser diode
    Week 8: Detectors for optical communication, p-i-n photodetector, APD, System design, dispersion and attenuation limited systems,
    BER, power budgeting of fiber link, recent advances