Deep Learning com Python de A a Z - O Curso Completo

Go to class
Write Review

Deep Learning com Python de A a Z - O Curso Completo provided by Udemy is a comprehensive online course, which lasts for 20 hours worth of material. Deep Learning com Python de A a Z - O Curso Completo is taught by Jones Granatyr and IA Expert Academy. Upon completion of the course, you can receive an e-certificate from Udemy. The course is taught in Portugueseand is Paid Course. Visit the course page at Udemy for detailed price information.

Overview
  • Redes neurais artificiais, convolucionais, recorrentes, mapas auto organizáveis, boltzmann machines, autoencoders e GANs

    What you'll learn:

    • Aprenda na teoria e na prática como construir redes neurais artificiais para resolver problemas reais do dia
    • Aprenda os conceitos sobre redes neurais convolucionais, redes neurais recorrentes, mapas auto organizáveis, boltzmann machines, auto encoders e redes adversariais generativas
    • Avalie e configure os parâmetros de uma rede neural
    • Construa passo a passo redes neurais aplicadas em problemas de classificação e regressão
    • Construa passo a passo uma rede neural para prever o preço de veículos usados e prever a venda de jogos de vídeo games
    • Implemente redes neurais convolucionais para classificar dígitos escritos a mão e também para identificar gatos e cachorros em imagens
    • Implemente uma rede neural recorrente para prever os preços das ações da Petrobras
    • Implemente mapas auto organizáveis aplicados em agrupamento de dados e detecção de fraudes em bases financeiras
    • Reduza a dimensionalidade de bases de dados utilizando Boltzmann Machines e autoencoders
    • Crie um sistema de recomendação utilizando Boltzmann Machines
    • Crie novas imagens utilizando redes adversariais generativas

    Importante: o código fonte está atualizado para as últimas versões das bibliotecas, inclusive o TensorFlow 2.0!

    A área de Deep Learning (Aprendizagem Profunda) está relacionada a aplicação das redes neurais artificiais na resolução de problemas complexos e que requerem artifícioscomputacionais avançados. Existem diversas aplicações práticas que já foram construídas utilizando essastécnicas, tais como:carros autônomos, descoberta de novos medicamentos,cura e diagnóstico antecipado dedoenças, geração automática de notícias, reconhecimento facial, recomendação de produtos, previsão dos valores de ações na bolsa de valores e até mesmo a geração automática de roteiros de filmes! Nesses exemplos, a técnica base utilizada são as redes neurais artificiais, que procuram "imitar" como o cérebro humano funciona e são consideradas hoje em dia como as mais avançadas no cenário de Machine Learning (Aprendizagem de Máquina).

    A área de Deep Learningé atualmente um dos campos de trabalhomais relevantesda Inteligência Artificial, sendo que omercado de trabalho dessa área nos Estados Unidos e em vários países da Europa está em grande ascensão; e a previsão é que no Brasil cada vez mais esse tipo de profissional seja requisitado! Inclusive alguns estudos apontam que o conhecimento dessa área será em breve um pré-requisito para os profissionais de Tecnologia da Informação!

    E para levar você até essa área, neste curso você terá uma visão teórica e principalmente prática sobre as principais e mais modernas técnicas de Deep Learning utilizando o Python! Este curso é considerado de A à Z pelo fato de apresentar desde os conceitos mais básicos sobre as redes neurais até técnicas mais modernas e avançadas, de modo que ao final você terá todas as ferramentas necessárias para construir soluções complexas e que podem ser aplicadas em problemas do dia-a-dia das empresas! Para isso, o conteúdo está dividido em sete partes: redes neurais artificiais, redes neurais convolucionais, redes neurais recorrentes, mapas auto organizáveis, boltzmann machines, autoencoders e redes adversariais generativas. Você aprenderá a teoria básica sobre cada um desses assuntos, bem como implementará exemplos práticos passo a passo aplicado em cenários reais. Veja abaixo alguns dos projetos que serão desenvolvidos:

    • Classificação se um câncer é maligno ou benigno baseado nos dados do tumor

    • Classificação de tipos de plantas

    • Previsão do preço de veículos usados baseado nas características do carro

    • Previsão de quanto um jogo de vídeo game venderá

    • Classificação de dígitos escritos a mão

    • Classificação de imagens de gatos e cachorros

    • Classificação das imagens do Homer e Bart, do desenho dos Simpsons

    • Classificação de objetos, como por exemplo: aviões, automóveis, pássaros, gatos, veados, cachorros, sapos, cavalos, barcos e caminhões

    • Construção de série temporal para previsão dos preços das ações da Petrobrás

    • Previsão da poluição na China em determinadas horas do dia

    • Agrupamento de tipos de vinhos baseados nas características do produto

    • Agrupamento de câncer que são malignos ou benignos

    • Detecção de clientes que podem tentar fraude em bases de dados financeiras

    • Redução de dimensionalidade em imagens

    • Desenvolvimento de um sistema de recomendação básico de filmes

    • Comparação de sistemas de recomendação utilizando redes neurais e utilizando técnicas clássicas de filtragem colaborativa

    • Criação automática de imagens

    Ao final de cada seção teórica você tem questionários para revisar o conteúdo, bem como indicações de referências complementares caso você queira aprender mais sobre os assuntos. E ao final de cada seção prática, você encontra projetos de programação para fortalecer o conteúdo sobre as implementações, todos com as soluções para você comparar com o seu progresso!

    Este curso é indicado para todos os níveis, ou seja, caso seja seu primeiro contato com Deep Learning, você conta com um apêndice que contém aulas básicas sobre aprendizagem de máquina e redes neurais! É também importante enfatizar que o único pré-requisito necessário é saber lógica de programação, pois mesmo se você não seja especialista na linguagem Python você conseguirá acompanhar o curso sem nenhum problema!

    Preparado(a) para dar um importante passo na sua carreira? Aguardo você no curso! :)